Phytochemical analysis and antioxidative properties of *Centaurea albonitens*

S. Hamedeyazdan1,2, F. Niroumand3, F. Fathiazad2*

1Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.
2Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
3Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.

Abstract

Background and objectives: The genus *Centaurea* from the Asteraceae family is one of the most widely distributed plant genera worldwide that has been extensively used in folk medicine for hundreds of years. The present study is the first investigation about the principal constituents of *Centaurea albonitens* Turrill which is native to Iran. **Methods:** The aerial parts of *C. albonitens* were extracted via maceration. Phytochemical analysis of the methanol extract was carried out via different chromatography approaches like HPLC, SPE and preparative TLC. Structures of the purified compounds were revealed through spectral analysis from 1D and 2D NMR including DQF-COSY, HSQC and DEPT in comparison with the relative data in published reports. Subsequently, the antioxidant property of the extract was evaluated via scavenging the free DPPH radicals. In addition, the total phenolic and flavonoid contents of the extract were ascertained based on Folin-Ciocalteu and colorimetric aluminum chloride methods, correspondingly. **Results:** Analysis of the extract yielded in the isolation and identification of arctiin and apigenin-4'-O-rhamnoside. Moreover, the antioxidant assessment determined IC\textsubscript{50} value of 389.9 µg/mL for the plant extract in DPPH assay. The total phenolics and flavonoids content of the plant extract were 2.87 g gallic acid equivalent and 0.28 g quercetin equivalent both in 100 g dried plant material. **Conclusion:** The findings of this study introduce *C. albonitens* as a suitable source for isolation of lignans (like arctiin).

Keywords: apigenin-4'-O-rhamnoside, arctiin, Asteraceae, *Centaurea albonitens*, lignans

Introduction

Plants of Asteraceae family have been valuable natural remedy resources for most nations. The genus *Centaurea* (Asteraceae) is one of the most widely distributed plant genera worldwide. The number of taxa included in this genus ranges from 500 to 600 globally [1]. Turkey is the most abundant habitat for *Centaurea* species [2] while Iran has been accepted as one of the major centers of diversity for the genus *Centaurea*, as well. *Flora Iranica* [3] has reported 28 growth situ for different species of *Centaurea*. It is of note to mention that 74 species from *Centaurea* such as *C. bachtiarica*, *C. lachnopus*, *C. aziziana*, *C. ustulata*, *C. pterocaula*, *C. imperialis*, *C. pabotii*, *C. hyrcanica* are native to Iran [4]. Different species of genus *Centaurea* have been extensively used in folk medicine for hundreds of years [5] as wound healing, antidiabetic, anti-
Secondary metabolites and phytocompounds have been isolated from Centaurea species with a yield of 6.07% (w/w) as selected for identification and structure elucidation on silicagel plates, extracted and analyzed according to the chromatogram. The greenish methanol (MeOH) extract was fractionated by solid-phase-extraction (SPE) on Sep-Pak C18 cartridge (10 g, Waters, Ireland) using a step-wise gradient of MeOH-H₂O mixture (10:90, 20:80, 40:60, 60:40, 80:20 and 100:0), 200 mL each affording 6 fractions. All fractions were dried under vaccum using a rotary evaporator at 45 °C. In order to obtain the optimum gradient time program of the SPE fractions, reversed phase analytical-HPLC (Shimadzu, Japan) equipped with a Shim-pack ODS column (250 mm ×4.6 mm I.D.) and a UV/PDA detector was applied. Accordingly, fraction 3 which was eluted with 40% MeOH-H₂O containing the main compounds was further analyzed by preparative-HPLC. Separations were carried out with a linear gradient of mobile phase, 20-50% acetonitrile in water; 50 min; flow rate: 15 mL/min. Peak fractions with retention time of 19.5 min (fraction I) and 21.5 min (fraction II) were collected according to the chromatogram (figure 1). Additional purification of the two HPLC fractions I and II were accomplished by normal phase preparative thin layer chromatography on silicagel GF254. Mobile phase of ethyl acetate 100: formic acid 11: acetic acid 1: water 26 was employed for preparative TLC, yielding compound I (70 mg, Rf~0.5) and compound II (56 mg, Rf~0.8). Detection of the spots was fulfilled under UV-Visible light at the wavelengths of 254 and 366 nm. The spots were scraped off the silicagel plates, extracted and eluted with methanol. Eventually, chemical structures of the purified compounds were elucidated via 1D and 2D NMR spectroscopic analyses recorded in DMSO-d6 on a Bruker DRX 400 MHz NMR spectrometer in accordance with the obtained experimental data and authentic published data.

Experimental

Plant material

Aerial parts of *C.albonitens* were collected during the flowering stage from wild population growing in Mishudagh, East Azerbaijan, Iran, in June 2015. A voucher specimen (No. 6583) of the plant has been deposited at the herbarium of the East Azerbaijan research center for agriculture and natural resources Research and Education Center, Tabriz, Iran.

Extraction, fractionation and isolation

The air-dried ground aerial parts of *C. albonitens* (450 g) were defatted with petroleum ether and subsequently extracted with chloroform (3×4 L) and methanol (3×4 L) respectively, for 24 h via maceration at room temperature. The crude extracts were filtered, concentrated and dried at 45 °C using a rotary evaporator (Heidolph, Germany). The greenish methanol (MeOH) extract weighing 6.07% (w/w) was selected for further evaluation which was kept in an air tight bottle in a refrigerator until use. Two g of the dried MeOH extract was fractionated by solid-phase extraction (SPE) on Sep-Pak C18 cartridge (10 g, Waters, Ireland) using a step-wise gradient of MeOH-H₂O mixture (10:90, 20:80, 40:60, 60:40, 80:20 and 100:0), 200 mL each affording 6 fractions. All fractions were dried under vaccum using a rotary evaporator at 45 °C. In order to obtain the optimum gradient time program of the SPE fractions, reversed phase analytical-HPLC (Shimadzu, Japan) equipped with a Shim-pack ODS column (250 mm ×4.6 mm I.D.) and a UV/PDA detector was applied. Accordingly, fraction 3 which was eluted with 40% MeOH-H₂O containing the main compounds was further analyzed by preparative-HPLC. Separations were carried out with a linear gradient of mobile phase, 20-50% acetonitrile in water; 50 min; flow rate: 15 mL/min. Peak fractions with retention time of 19.5 min (fraction I) and 21.5 min (fraction II) were collected according to the chromatogram (figure 1). Additional purification of the two HPLC fractions I and II were accomplished by normal phase preparative thin layer chromatography on silicagel GF254. Mobile phase of ethyl acetate 100: formic acid 11: acetic acid 1: water 26 was employed for preparative TLC, yielding compound I (70 mg, Rf~0.5) and compound II (56 mg, Rf~0.8). Detection of the spots was fulfilled under UV-Visible light at the wavelengths of 254 and 366 nm. The spots were scraped off the silicagel plates, extracted and eluted with methanol. Eventually, chemical structures of the purified compounds were elucidated via 1D and 2D NMR spectroscopic analyses recorded in DMSO-d6 on a Bruker DRX 400 MHz NMR spectrometer in accordance with the obtained experimental data and authentic published data.

Determination of in vitro antioxidant activity

1,1-diphenyl-2-picryl-hydrazil (DPPH) was used to determine the free radical scavenging potential of the MeOH extract. Briefly, 8 mg of DPPH in 100 mL MeOH was prepared [10]. The stock concentration of MeOH extract 1 mg/mL was prepared followed by two-fold dilution series (i.e. 5×10⁻¹, 2.5×10⁻¹, 1.25×10⁻¹, 6.25×10⁻², 3.13×10⁻² and 1.56×10⁻² mg/mL).
Correspondingly, 5 mL of DPPH solution was added to 5 mL of each concentration. The mixture was shaken and allowed to stand at room temperature for 30 min. Absorbance of the samples were recorded against a blank (methanol) at 517 nm using a UV spectrophotometer (Shimadzu, Japan). The experiments were performed in triplicate and the average absorption was recorded for each concentration. The free radical scavenging percentage (I %) was calculated by the following formula:

\[
I(\%) = 100 \times \frac{(A_{\text{blank}} - A_{\text{sample}})}{A_{\text{blank}}}
\]

\(IC_{50}\) (50% inhibitory concentration), concentration of the MeOH extract reducing 50% of the DPPH free radicals, was calculated from the graph of inhibition percentages against different concentration of \(C.\ albonitens\) MeOH extract in mg/mL. Besides, the same procedure was practiced with quercetin as the positive control [11].

Assay for total phenolics content

The total phenolics content of the MeOH extract was determined by Folin-Ciocalteau method [12]. Briefly, 0.5 mL of MeOH extract, 5 mL of Folin-Ciocalteau 10% (v/v) in distilled water and 4 mL Na\(_2\)CO\(_3\) 1 M were all mixed. Following the incubation at room temperature for 15 min, the absorbance was measured by UV-VIS spectrophotometer at 765 nm. The standard calibration curve of gallic acid was achieved by 25, 50, 100, 200 and 400µg/mL in MeOH: water (50:50, v/v). The total phenolics content was calculated from the calibration curve of gallic acid. Total phenolics content of MeOH extract was mentioned as g gallic acid equivalent per 100 g of dried plant material [13].

Assay for total flavonoid content

The flavonoid content of MeOH extract was determined using colorimetric aluminum chloride method [14]. Briefly, 0.5 mL of the extract, 1.5 mL MeOH, 0.1 mL aluminum chloride (10%), 0.1 mL potassium acetate (1M) and 2.8 mL distilled water were mixed. Following the
mixture incubation at room temperature for 30 min, the absorbance was measured by UV-VIS spectrophotometer at 415 nm. The standard calibration curve of quercetin was achieved by 25, 50, 100, 200 and 400 µg/mL in MeOH. The total flavonoid content was calculated from the calibration curve of quercetin. Total flavonoid content of MeOH extract was mentioned as g quercetin equivalent per 100 g of dried plant material [15].

Results and Discussion
Phytochemical analysis of the MeOH extract from the aerial parts of C. albonitens resulted in isolation of a lignan and a flavonoid. The structures of the isolated compounds were determined using 1D and 2D NMR spectral analyses, and also by comparing the obtained findings with published data in the literature. The structures of the isolated compounds have been shown in figure 2. The relative 1H-NMR, 13C-NMR data were as follows:

Compound (1): arctiin; 1H-NMR (400 MHz, DMSO d6): δH 6.79 (1H, d, J=1.6 Hz, H-6 H-2), 6.99 (1H, d, J=8.4 Hz, H-5), 6.67 (1H, dd, J=8.4 Hz, 1.6 Hz, H-6), 2.5 (2H, m, H-7) 2.75 (1H, m, H-8), 4.10 (1H, m, H-9a), 3.89 (1H, m, H-9b), 6.67 (1H, d, J=2 Hz, H-2'), 6.84 (1H, d, J=8 Hz, H-5'), 6.62 (1H, dd, J=8 Hz, 2 Hz, H-6'), 2.82 (2H, m, H-7'), 2.5 (2H, m, H-8'), 4.84 (1H, d, J=7.6 Hz, Glu H-1'), 3.1-3.3 (4H, m, sugar protons), 3.45 (2H, d, J=5.2 Hz, H-6'a) and signals for three protons of methoxy groups (3-OCH$_3$, 3'-OCH$_3$, 4'-OCH$_3$) appeared in the range of 3.6-3.8.

13C-NMR (125 MHz, DMSO d6): δC 132.20 (C-1), 114.22 (C-2), 147.74 (C-3), 56.07 (C-3, OCH$_3$), 115.48 (C-5), 121.78 (C-6), 37.29 (C-7), 46.01 (C-8), 71.18 (C-9), 131.66 (C-1'), 112.80 (C-2'), 149.09 (C-3'), 55.92 (C-3', OCH$_3$), 145.73 (C-4'), 55.84 (C-4', OCH$_3$), 112.27 (C-5'), 120.89 (C-6'), 33.95 (C-7'), 41.20 (C-8'), 178.95 (C-9, C=O), and sugar: 100.63 (C-1''), 73.67 (C-2''), 77.27 (C-3''), 70.08 (C-4''), 77.47 (C-5''), 61.07 (C-6'').

![Figure 2. Chemical structures of compound 1, arctiin, (a) and compound 2, apigenin-4'-O-rhamnose (b)](image)
Phytochemicals from Centaurea albonitens

[18], C. sphaerocephala [19] and C. pamphylica [17].

Compound (2): apigenin-4'-O-rhamnoside; 1H-NMR (400 MHz, DMSO d6): δH 6.77 (1H, s, H-3), 6.07 (1H, brs, H-6), 6.36 (1H, brs, H-8), 8.00 (2H, d, J=9.2 Hz, H-2', 6'), 7.19 (2H, d, J=9.2 Hz, H-3', 5'), 5.27 (1H, d, J=7.6 Hz, Rhm H-1"), 3.1-3.3 (m, sugar protons), 1.02 (3H, d, J=6.0 Hz, H-6").

According to the spectral data analysis which were characteristics of the flavonoid structures and also in comparison with published data, the structure of compound 2 was suggested to be apigenin-4'-O-rhamnoside in agreement with literature [20]. To the best of our knowledge, the lignan named arctin (compound 1) and apigenin-4'-O-rhamnoside (compound 2) are being reported here for the first time from C. albonitens.

The in vitro free radical scavenging activity of MeOH extract of C. albonitens was determined by DPPH assay. According to the results of the antioxidant assay, the IC₅₀ value for free radical scavenging ability of MeOH extract and quercetin were determined as 389.9 μg/mL and 4.7 μg/mL, respectively (table 1). Besides, the total phenolic content according to the Folin-Ciocalteau method was determined from the standard curve which was prepared by (50-250 μg/mL) solutions of gallic acid against the absorbance and via the equation below:

\[
\text{Absorbance} = 0.0063 \times \text{Gallic acid (μg)} + 0.0372, (R^2 = 0.999)
\]

The total phenolic content of the plant aqueous extract was equivalent to 2.87 g of gallic acid per 100 g powdered dry plant material (table 1). The assay for flavonoid content was done by colorimetric aluminum chloride method and the absorbance of the plant extract was calculated from the equation of the standard curve below:

\[
\text{Absorbance} = 0.0088 \times \text{Quercetin (μg)} - 0.0625, (R^2 = 0.9965)
\]

The total flavonoids content of the plant aqueous extract was equivalent to 0.28 g of quercetin per 100 g powdered dry plant material (table 1). The results of antioxidant activity indicated that the antioxidant properties present in the aerial parts of C. albonitens could be assigned to the polar compounds, flavonoid and phenolic contents of the MeOH extract. Apparently, an increase in the phenolics and flavonoids content of the plant extract in higher concentrations were in association with the superior radical scavenging activity of the extract.

<table>
<thead>
<tr>
<th>Table 1. Antioxidant activity, total phenolics and flavonoids contents of Centaurea albonitens MeOH extract.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPPH Scavenging activity (IC₅₀(μg/mL))</td>
</tr>
<tr>
<td>MeOH extract</td>
</tr>
<tr>
<td>Quercetin</td>
</tr>
</tbody>
</table>

Literature review on different species of genus Centaurea revealed valuable various compounds for instance in a study conducted by Hodaj et al., phytochemical investigation on the seeds of C. vlachorum led to the isolation and identification of four compounds including two indole alkaloids N-(p-coumaroyl) serotonin (1) moschamine (2) and two dibenzylbutyrolactonelignans: matairesinol (3) and arctin (4) [21]. Elsewhere, investigation on aerial parts of C. triumfetti revealed the presence of various types of plant secondary metabolites like apigenin, luteolin and chrysoeriol [22]. Flamin et al., confirmed that aerial parts of C. bracteata contained nineteen compounds, a sterol glucoside, two phenolic acids, three quinic acid derivatives, and 13 flavonoids, two of which were new compounds; centabractein and bracteoside [23]. In another study, different sesquiterpene lactone derivatives (repin, solstitialin A, janerin, cynaropicrin) were isolated from the aerial parts of C. Solstitiallis L. subsp. Solstitialis which were evaluated and verified for their antinociceptive and antipyretic activities [24]. In a report on essential oil of C. kilaea flowers, nineteen compounds were identified which represented 59.5% of the essential oil. The oil contained hexadecanoic acid 26.2% and tetradecanoic acid 18.1% as the main components accompanied by β- eudesmol 3.3%, decanoic...
acid 3.1% and dodecanoic acid 2.0%. It was reported that C. kilaea essential oil contained high amounts of fatty acids and minor amounts of sesquiterpene alcohols [25]. Additionally, fatty acids were the major compounds of the essential oils of C. aladaghensis, C. luschaniiana and C. saligna [26].

Generally, the taxa in the subfamily Carduoideae (tribe Cynareae) are rich in sesquiterpene lactones as well as lignans. Earlier phenolic surveys on Centaurea sp. have revealed presence of flavonoids like vitexin, apigenin, luteolin and chrysoeriol with their derivatives, alongside a nearly inclusive dominance of lignin compounds such as arctiin, arctigenin, matairesinol, matairesinoside and lappaol. According to the recently published papers on the potential biological effects of arctiin we may draw readers’ attention to the various reported pharmacological properties of arctiin [27]; anti-inflammatory [28], anti-proliferative [23,29,30], antioxidative [31], anti-tumor [32,33], anti-diabetic [34,35], anti-adipogenic [36], and anti-bacterial [37] activities together with being influenza therapeutic agent [38]. In view of the distinguished biological activities of arctiin and apigenin-4’-O-rhamnoside, the findings of this study underline C. albonitens as a resource of the bioactive compounds which could be subjected to supplementary evaluation on their toxicological and further pharmacological properties.

Acknowledgements
The authors would like to thank Drug Applied Research Center of Tabriz University of Medical Sciences, Tabriz, Iran for financial support of this study.

Declaration of interest
The authors declare that there is no conflict of interest. The authors alone are responsible for the content of the paper.

References

[22] Gonnet JF. Flavonoid glycoside variation in wild specimens of Centaurea triumfetti (Compositae) and comments on its relationships with Centaurea montana based on flavonoid fingerprints. Biochem Syst Ecol. 1993; 21(3): 389-396.

