Evaluation of Wound Healing and Cytotoxic Activities of Anacardic Acid (13:0) Isolated from Pistacia vera Hull Extract

Document Type : Original paper

Authors

1 Medicinal Plants Research Center, The Institute of Pharmaceutical Sciences (TIPS), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

2 Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

3 Department of Medicinal Chemistry; Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

10.22127/rjp.2024.420686.2249

Abstract

Background and objectives: Pistacia vera fruit is a popular nut belonging to Anacardiaceae family. Traditionally, the hulls have been used as herbal remedies for treatment of oral and skin wounds,peptic ulcers and hemorrhoids. Methods: In this study, anacardic acid (13:0) was elucidated by EI-MS, FTIR, 1D-NMR and 2D-NMR data analysisfrom active fraction. Cytotoxic activity was assessed against normal NIH/3T3 cells, and several cancerous human cells, including human breast cancer (MCF-7), hepatocarcinoma (HepG-2) and gastric cancer (MKN-45) using MTT assay. The wound healing activity of this compound was evaluated using in vitro scratch-wound healing assay on NIH/3T3 cells. Results: Anacardic acid (13:0) was toxic at the concentrations tested against all cell lines (6.25-100 µg/mL). Theselectivity index showed no selective cytotoxicity (SI< 2); however, anacardic acid (13:0) revealed significant wound healing effects through the migration of NIH/3T3 cells at the concentrations of 1.25-5 µg/mL. Conclusion: These results suggested that anacardic acid (13:0) from P. verahull has cytotoxic activity on human cancer cell lines and can also be useful as a bioactive molecule in wounds treatment. However, more in vitro and in vivo studies need to be done to confirm the efficacy and cytotoxicity of anacardicacid (13:0).

Keywords

Main Subjects


  • Casas-Agustench P, Salas-Huetos A, Salas-Salvadó J. Mediterranean nuts: origins, ancient medicinal benefits and symbolism. Public Health Nutr. 2011; 14(12): 2296-2301.
  • Alma MH, Nitz S, Kollmannsberger H, Digrak M, Efe FT, Yilmaz N. Chemical composition and antimicrobial activity of the essential oils from the gum of Turkish pistachio (Pistacia vera). J Agric Food Chem. 2004; 52(12): 3911-3914.
  • Bozorgi M, Memariani Z, Mobli M, Salehi Surmaghi MH, Shams-Ardekani MR, Rahimi R. Five Pistacia species ( vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): a review of their traditional uses, phytochemistry, and pharmacology. Sci World J. 2013: Article ID 219815.
  • Tsokou A, Georgopoulou K, Melliou E, Magiatis P, Tsitsa E. Composition and enantiomeric analysis of the essential oil of the fruits and the leaves of Pistacia vera from Greece. Molecule 2007; 12(6): 1233-1239.
  • Paterniti I, Impellizzeri D, Cordaro M, Siracusa R, Bisignano C, Gugliandolo E, Carughi A, Esposito E, Mandalari G, Cuzzocrea S. The anti-inflammatory and antioxidant potential of Pistachios (Pistacia vera) in vitro and in vivo. Nutrients. 2017; 9(8): 915-929. 
  • Mahjoub F, Akhavan Rezayat K, Yousefi M, Mohebbi M, Salari R. Pistacia atlantica a review of its traditional uses, phytochemicals and pharmacology. J Med Life. 2018; 11(3): 180-186.
  • Orhan I, Küpeli E, Aslan M, Kartal M, Yesilada E. Bioassay-guided evaluation of anti-inflammatory and antinociceptive activities of pistachio, Pistacia vera J Ethnopharmacol. 2006; 105(1-2): 235-240.
  • He ML, Chen WW, Zhang PJ, Jiang AL, Fan W, Yuan HQ, Liu WW, Zhang JY. Gum mastic increases maspin expression in prostate cancer cells. Acta Pharmacol Sin. 2007; 28(4): 567-572.
  • Paraschos S, Mitakou S, Skaltsounis AL. Chios gum mastic: a review of its biological activities. Curr Med Chem. 2012; 19(14): 2292-2302.
  • Farahpour MR, Mirzakhani N, Doostmohammadi J, Ebrahimzadeh M. Hydroethanolic Pistacia atlantica hulls extract improved wound healing process, evidence for mast cells infiltration, angiogenesis and RNA stability. Int J Surg. 2015; 17: 88-98.
  • Fathalizadeh J, Bagheri V, Khorramdelazad H, Kazemi Arababadi M, Jafarzadeh A, Mirzae MR, Shamsizadeh A, Hajizadeh MR. Induction of apoptosis by pistachio (Pistacia vera) hull extract and its molecular mechanisms of action in human hepatoma cell line HepG2. Cell Mol Biol. 2015; 61(7): 128-134.
  • Glei M, Ludwig D, Lamberty J, Fischer S, Lorkowski S, Schlörmann W. Chemopreventive potential of raw and roasted pistachios regarding colon carcinogenesis. Nutrients. 2017; 9(12): 1-14.
  • Sarkhail P, Salimi M, Sarkheil P, Mostafapour Kandelous H. Anti-melanogenic activity and cytotoxicity of Pistacia vera hull on human melanoma SKMEL-3 cells. Acta Med Iran. 2017; 55(7): 422-428.
  • Seifaddinipour M, Farghadani R, Namvar F, Mohamad J, Abdul Kadir H. Cytotoxic effects and anti-angiogenesis potential of pistachio (Pistacia vera) hulls against MCF-7 human breast cancer cells. Molecules. 2018; 23(1): 1-15.
  • Barreca D, Lagana G, Leuzzi U, Smeriglio A, Trombetta D, Bellocco E. Evaluation of the nutraceutical, antioxidant and cytoprotective properties of ripe pistachio (Pistacia vera, variety Bronte) hulls. Food Chem. 2015; 196: 493-502.
  • Erşan S, Güçlü Üstündağ O, Carle R, Schweiggert RM. Identification of phenolic compounds in red and green pistachio (Pistacia vera) hulls (exo-and mesocarp) by HPLC-DAD-ESI-(HR)-MSn. J Agric Food Chem. 2016; 64(26): 5334-5344.
  • Ventura G, Calvano CD, Blasi D, Coniglio D, Losito I, Cataldi TRI. Uncovering heterogeneity of anacardic acids from pistachio shells: a novel approach for structural characterization. Food Chem. 2023; Article ID 136636.
  • Rauf A, Patel S, Uddin G, Siddiqui BS, Ahmad B, Muhammad N, Mabkhot YN, Hadda TB. Phytochemical, ethnomedicinal uses and pharmacological profile of genus Biomed Pharmacother. 2017; 86: 393-404.
  • Sarkhail P, Navidpour L, Rahimifard M, Hosseini NM, Souri E. Bioassay-guided fractionation and identification of wound healing active compound from Pistacia vera hull extract. J Ethnopharmacol. 2020; 248: 1-14.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65(1-2): 55-63.
  • Zou J, Zhu L, Jiang X, Wang Y, Wang Y, Wang X, Chen B. Curcumin increases breast cancer cell sensitivity to cisplatin by decreasing FEN1 expression. Oncotarget. 2018; 9(13): 11268-11278.
  • Cory G. Scratch wound assay. Meth Mol Biol. 2011; 769: 25-30.
  • Muniandy K, Gothai S, Tan WS, Kumar SS, Mohd Esa N, Chandramohan G, Al-Numair KS, Arulselvan P. In vitro wound healing potential of stem extract of Alternanthera sessilis. Evid Based Complement Alternat Med. 2018: Article ID 3142073.
  • Philip JY, Da Cruz Francisco J, Dey ES, Buchweishaija J, Mkayula LL, Ye L. Isolation of anacardic acid from natural cashew nutshell liquid (CNSL) using supercritical carbon dioxide. J Agric Food Chem. 2008; 56(20): 9350-9354.
  • Fu Y, Hong S, Li D, Liu S. Novel chemical synthesis of ginkgolic acid (13:0) and evaluation of its tyrosinase inhibitory activity. J Agric Food Chem. 2013; 61(22): 5347-5352.
  • Aborah M. Laboratory report on quantification of anacardic acids from pistachio hulls. Int J Sci Technol Res. 2022; 13(1): 1-7.
  • Kubo I, Kinst-Hori I, Yokokawa Y. Tyrosinase inhibitors from Anacardium occidentale J Nat Prod. 1994; 57(4): 545-551.
  • Masuoka N, Kubo I. Characterization of xanthine oxidase inhibition by anacardic acids. Biochim Biophys Acta. 2004; 1688(3): 245-249.
  • Sun Y, Jiang X, Chen S, Price BD. Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett. 2006; 580(18): 4353-4356.
  • Ha TJ, Kubo I. Lipoxygenase inhibitory activity of anacardic acids. J Agric Food Chem. 2005; 53(11): 4350-4354.
  • Ondo JP, Lekana-DoukiJ B, Bongui JB, Zang Edou E, Zatra R, Toure-Ndouo FS, Elomri A, Lebibi J, Seguin E. In vitro antiplasmodial activity and cytotoxicity of extracts and fractions of Vitex madiensis, medicinal plant of Gabon. Trop Med Int Health. 2012; 17(3): 316-321.
  • Li HM, Ma H, Sun X, Li B, Cao C, Dai Y, Zhu M, Wu CZ. Anti-cancer properties of ginkgolic acids in human nasopharyngeal carcinoma CNE-2Z cells via inhibition of heat shock protein 90. Molecules. 2021; 26(21): 1-12.
  • Benalia N, Boumechhour A, Ortiz S, Echague CA, Rose T, Fiebich BL, Chemat S, Michel S, Deguin B, Dahamna S, Boutefnouchet S. Identification of alkylsalicylic acids in Lentisk oil (Pistacia lentiscus) and viability assay on human normal dermal fibroblasts. OCL. 2021; 28(22): 1-10.
  • Biernacka P, Adamska I, Felisiak K. The potential of Ginkgo biloba as a source of biologically active compounds-a review of the recent literature and patents. Molecules. 2023; 28(10): 1-54.
  • Baron-Ruppert G, Luepke NP. Evidence for toxic effects of alkylphenols from ginkgo biloba in 320 the hen's egg test (HET). Phytomedicine. 2001; 8(2): 133-138.
  • Seong Y, Shin P, Kim G. Anacardic acid induces mitochondrial-mediated apoptosis in the A549 human lung adenocarcinoma cells. Int J Oncol. 2013; 42(3): 1045-1051.
  • Schultz DJ, Wickramasinghe NS, Ivanova MM, Isaacs SM, Dougherty SM, Imbert-Fernandez Y, Cunningham AR, Chen C, Klinge CM. Anacardic acid inhibits estrogen receptor α-DNA binding and reduces target gene transcription and breast cancer cell proliferation. Mol Cancer Ther. 2010; 9(3): 594-605.
  • Hamdoun S, Efferth T. Ginkgolic acids inhibit migration in breast cancer cells by inhibition of NEMO sumoylation and NF-κB activity. Oncotarget. 2017; 8(21): 35103-35115.