X-ray Diffraction, Electronic Circular Dichroism, and Quantum Mechanics (TD-DFT) Investigations on 4 Dehydroxyaltersolanol A, a Secondary Metabolite from Endophytic Fungus Nigrospora oryzae

Document Type : Original paper

Authors

1 Faculty of Pharmacy, Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Kuala Selangor, Selangor, Malaysia.

2 Atta-ur-Rahman Institute for Natural Product Discovery (AuRins), Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Kuala Selangor, Selangor, Malaysia.

3 Biotransformatiom Research Group (Health and Wellness), Faculty of Pharmacy, Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Kuala Selangor, Selangor, Malaysia.

4 Chemistry Department, College of Science, King Faisal University, Al-Hofuf, Saudi Arabia.

5 Faculty of Applied Sciences, Universiti Teknologi MARA Shah Alam, Shah Alam, Selangor, Malaysia.

Abstract

Background and objectives: A tetrahydro anthraquinone derivative, 4-dehydroxyaltersolanol A, has been obtained from Nigrospora oryzae, which was isolated from Uncaria borneensis Havil as an endophytic fungus. This is a recently described compound whose stereochemistry was assumed from biogenetic considerations. However, using ECD spectral analysis in combination with TD-DFT calculations, its stereochemistry could be determined unambiguously. Method: In the current research, the selected TH1P45 culture was analysed using semi-preparative HPLC, which led to the isolation of six secondary metabolites, including 4-dehydroxyaltersolanol A (1). We have further presented full evidence of the stereochemistry of compound 1. With the help of quantum calculations, we also determined the mechanism by which this compound degrades in solution. Results: The analysis of TH1P45 culture led to the isolation of six secondary metabolites, including 4-dehydroxyaltersolanol A, three anthraquinone derivatives (macrosporin, bostrycin and altersolanol B), and two pyrones (pestalopyrone and hydroxypestalopyrone). Conclusion: A full evidence of the stereochemistry of compound 1 with the help of the combination of X-ray crystallography, ECD, and TD-DFT quantum calculations, allowed unambiguously assigning the absolute stereochemistry of 4 dehydroxyaltersolanol A as 1S,2R,3S as correctly assumed by Proksh and collaborators from biogenetic considerations.
 

Keywords

Main Subjects


  • Uzor PF, Ebrahim W, Osadebe PO, Nwodo JN, Okoye FB, Müller WEG, Lin W, Liu Z, Proksch P. Metabolites from Combretum dolichopetalum and its associated endophytic fungus Nigrospora oryzae -Evidence for a metabolic partnership. Fitoterapia. 2015; 105: 147–150.
  • Strobel GA. Rainforest endophytes and bioactive products. Crit Rev Biotechnol. 2002; 22(4): 315–333.
  • Sultan S, Sun L, Blunt JW, Cole ALJ, Munro MHG, Ramasamy K, Weber JFF. Evolving trends in the dereplication of natural product extracts. 3: Further lasiodiplodins from Lasiodiplodia theobromae, an endophyte from Mapania Tetrahedron Lett. 2014; 55(2): 453–455.
  • Ou SH. Rice diseases. Commonwealth Mycological Institute. Kew: Surrey, 1985.
  • Neergaard P. Seed pathology. London: The Macmillan Press Ltd, 1977.
  • Wu JB, Zhang CL, Mao PP, Qian YS, Wang HZ. First report of leaf spot caused by Nigrospora oryzae on Dendrobium candidum in China. Plant Dis. 2014; 98(7): 996–998.
  • Zhang LX, Li SS, Tan GJ, Shen JT, He T. First report of Nigrospora oryzae causing leaf spot of cotton in China. Plant Dis. 2012; 96(9): 1379.
  • Sharma P, Meena PD, Chauhan JS. First report of Nigrospora oryzae (Berk. & Broome) Petch causing stem blight on Brassica juncea in India. J Phytopathol. 2013; 161(6): 439–441.
  • Saunders M, Kohn LM. Host-synthesized secondary compounds influence the in vitro interactions between fungal endophytes of maize. Appl Environ Microbiol. 2008; 74(1): 136–142.
  • Li D, Chen Y, Pan Q, Tao M, Zhang W. A new eudesmane sesquiterpene from Nigrospora oryzae, an endophytic fungus of Aquilaria sinensis. Rec Nat Prod. 2014; 8(4): 330–333.
  • Szewczuk V, Kita W, Jarosz B, Truszkowska W, Siewiński AJ. Growth inhibition of some phytopathogenic fungi by organic extracts from Nigrospora oryzae (Berkeley and Broome). Basic Microbiol. 1991; 31(1): 69–73.
  • Rathod DP, Dar MA, Gade AK, Rai MK. Griseofulvin producing endophytic Nigrospora Oryzae from Indian Emblica officinalis Gaertn: a new report. Austin J Biotechnol Bioeng. 2014; 1(6): 1–5.
  • Tanaka M, Fukushima T, Tsujino Y, Fujimori T. Nigrosporins A and B, new phytotoxic and antibacterial metabolites produced by a fungus Nigrospora oryzae. Biosci Biotechnol Biochem. 1997; 61(11): 1848–1852.
  • Venkatasubbaiah P, Van Dyke CG, Chilton WS. Phytotoxins produced by Pestalotiopsis oenotherae, a pathogen of evening primrose. Phytochemistry. 1991; 30(5): 1471–1474.
  • Lee JC, Yang X, Schwartz M, Strobel G, Clardy J. The relationship between an endangered North American tree and an endophytic fungus. Chem Biol. 1995; 2(11): 721–727.
  • Suemitsu R, Nakajima M, Hiura M. Studies on the metabolic products of Macrosporium porri Elliott Part III. Structure of macrosporin (group II). Bull Agric Chem Soc Jpn. 1959; 23(6): 547–551.
  • Nakajima S. Studies on the metabolites of phytotoxic fungi. І. Isolation of macrosporin and 6-methylxanthopurpurin 3-methyl ether from Alternaria bataticola Ikata ex Yamamoto. Chem Pharm Bull. 1973; 21(9): 2083–2085.
  • Suemitsu R, Ohnishi K, Yanagawase S, Yamamoto K, Yamada Y. Biosynthesis of macrosporin by Alternaria porri. 1989; 28(6): 1621–1622.
  • Stoessl A. Some metabolites of Alternaria solani. Can J Chem. 1969; 47: 767–776.
  • Noda T, Take T, Watanabe T, Abe J. The structure of bostrycin. Tetrahedron. 1970; 26(6): 1339–1346.
  • Sheldrick GM. A short history of SHELX. Acta Crystallogr A. 2008; 64(Pt 1): 112
  • Sheldrick GM. SHELXL2013, Göttingen: University of Göttingen,
  • Jacquemin D, Wathelet V, Perpete EA, Adamo C. Extensive TD-DFT benchmark: singlet-excited states of organic molecules. J Chem Theory Comput. 2009; 5(9): 2420–2435.
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomer JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A.02. Wallingford: Gaussian Inc, 2009.
  • Dennington R, Keith T, Millam GaussView, Version 5.0.8.: Semichem Inc., Shawnee Mission KS, 2009.
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996; 14(1): 33–38.
  • Allouche AR. Gabedit - A graphical user interface for computational chemistry softwares. J Comput Chem. 2011; 32(1): 174–182.
  • Di Bari L, Pescitelli G. Electronic circular dichroism. In: Computational spectroscopy-methods, experiments and applications. Grunenberg J, Ed. Weinheim: Wiley-VCH, 2010.